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Universidade Federal do Rio de Janeiro.

1 This work is part of the first author’s PhD studies, who is being supervised by H.S. Migon and A.M.
Schmidt. R.R. Ravines is grateful to CAPES for the the financial support during her PhD studies.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline

X Review some distributed lag models

X Write them into a particular class of Bayesian Dynamic Models,

the transfer functions models.

X Perform inference following the Bayesian paradigm. Make use of

Markov chain Monte Carlo (MCMC) methods.

X Computation is made by the use of the software WinBugs.

X An example: the Koyck’s consumption function is analyzed using

two different approaches, the Koyck’s and the Solow’s distributed

lag models.
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Distributed-lag Models
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Distributed-lag Models

☞ The general form of a linear distributed-lag model is

Yt =

∞∑
i=0

βiXt−i + εt (1)

where any change in Xt will affect E[Yt] in all the later periods.

☞ The term βi in (1) is the ith reaction coefficient, and it is usually

assumed that limi→∞ βi = 0 and
∑∞

i=0 βi = β <∞.
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Distributed-lag Models

☞ The general form of a linear distributed-lag model is

Yt =

∞∑
i=0

βiXt−i + εt (1)

where any change in Xt will affect E[Yt] in all the later periods.

☞ The term βi in (1) is the ith reaction coefficient, and it is usually

assumed that limi→∞ βi = 0 and
∑∞

i=0 βi = β <∞.

☞ One important aspect to be considered is the number of param-

eters involved in these distributed lag models.

☞ In order to be parsimonious, it is assumed that the coefficients of

lagged variables are functionally related.
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� The Koyck Distributed Lag

βi = αλi, ∀i, with 0 < λ < 1. (2)

Then,

Yt = αXt + αλ1Xt−1 + αλ2Xt−2 + . . . + εt. (3)
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� The Koyck Distributed Lag

βi = αλi, ∀i, with 0 < λ < 1. (2)

Then,

Yt = αXt + αλ1Xt−1 + αλ2Xt−2 + . . . + εt. (3)

� The Solow Distributed Lags

βi = α

(
r + i− 1

i

)
(1− λ)rλ, 0 < λ < 1, ∀i, r > 0. (4)
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� The Koyck Distributed Lag

βi = αλi, ∀i, with 0 < λ < 1. (2)

Then,

Yt = αXt + αλ1Xt−1 + αλ2Xt−2 + . . . + εt. (3)

� The Solow Distributed Lags

βi = α

(
r + i− 1

i

)
(1− λ)rλ, 0 < λ < 1, ∀i, r > 0. (4)

� The Almon Distributed Lags

βi = α0 + α1i + α2i
2 + . . . + αpi

p =

p∑
k=0

αki
k. (5)
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(a) Koyck (b) Solow

(c) Almon

Figure 1: Examples of different Distributed Lag Models
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Bayesian Dynamic Models
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Bayesian Dynamic Models

☞ The general dynamic model is defined by {F (.),G(.),V ,W }t.
F (.) and G(.) are general smooth functions defining the mean

of the response variable and the state parameters evolution. V

and W represent the variances.

☞ For each t, the univariate Dynamic Linear Model (DLM) is

Observation equation: Yt =F ′
tθt + εt, εt ∼ N(0, Vt)

System equation: θt =Gtθt−1 + ωt, ωt ∼ N(0,W t) (6)

Initial information: (θ0 | D0) ∼ N [m0,C0]

☞ Extensions for non-linear (unknown G) and non-normal Bayesian

models are easily introduced.
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Bayesian Dynamic Models

☞ The general dynamic model is defined by {F (.),G(.),V ,W }t.
F (.) and G(.) are general smooth functions defining the mean

of the response variable and the state parameters evolution. V

and W represent the variances.

☞ For each t, the univariate Dynamic Linear Model (DLM) is

Observation equation: Yt =F ′
tθt + εt, εt ∼ N(0, Vt)

System equation: θt =Gtθt−1 + ωt, ωt ∼ N(0,W t) (6)

Initial information: (θ0 | D0) ∼ N [m0,C0]

☞ Extensions for non-linear (unknown G) and non-normal Bayesian

models are easily introduced.

☞ The distributed lagged models can be seen as particular cases of

DLM. Hence, they can be expressed in the form of (6).
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� Form-free transfer functions

E(Yt | θt) =

m∑
i=0

βiXt−i = β0Xt + β1Xt−1 + . . . + βmXt−m, (7)

The transfer response function of X is

{
βiX i = 0, 1, . . . ,m;

0 i > m.
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� Form-free transfer functions

E(Yt | θt) =

m∑
i=0

βiXt−i = β0Xt + β1Xt−1 + . . . + βmXt−m, (7)

The transfer response function of X is

{
βiX i = 0, 1, . . . ,m;

0 i > m.

� Functional form transfer functions

Yt = F ′θt + εt (8a)

θt = Gθt−1 +ψtXt + ∂θt (8b)

ψt = ψt−1 + ∂ψt (8c)

The transfer function model (8) can be written as the standard

DLM form:

Yt = F̃
′
θ̃t + εt, εt ∼ N(0, σ2

ε )

θ̃t = G̃tθ̃t−1 + ωt, ωt ∼ N(0, σ2
ωI).

(9)
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Bayesian Dynamic Models and Distributed Lag Models
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Bayesian Dynamic Models and Distributed Lag Models

☞ The Koyck distributed lag model, can be rewritten as

Yt = Et + εt (10a)

Et = λEt−1 + αXt (10b)

where Et = αXt + αλ1Xt−1 + αλ2Xt−2 + . . . and 0 < λ < 1.

• In this model, the transfer response function of X is simply

αλiX.

• Here, in the representation (8), we have n = 1, θt = Et, the

effect variable, ψt = α, the current effect for all t, F = 1,

G = λ and the noise term ∂θt is assumed to be zero.
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Bayesian Dynamic Models and Distributed Lag Models

☞ The Solow’s distributed lag model can be expressed in the form

of (9). In this case we have (1 − λL)rEt = α(1 − λ)rXt. An

evolution equation can be assigned for λ and r.
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Bayesian Dynamic Models and Distributed Lag Models

☞ The Solow’s distributed lag model can be expressed in the form

of (9). In this case we have (1 − λL)rEt = α(1 − λ)rXt. An

evolution equation can be assigned for λ and r.

☞ Also, the Almon’s model can be rewritten in a free form transfer

function (7) since it is a regression on a fixed and finite number

of lagged variables. By using (5) to define the coefficients of the

lagged variables, the transfer response function of Xt−i in the

mean of Yt will be{∑p
k=0 αki

kXt−i i = 0, 1, . . . ,m;

0 i > m.
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Inference Procedure
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Inference Procedure

☞ From Bayes’ theorem: π(θ | x) ∝ `(x | θ)π(θ)

☞ Bayesian inference has experienced a great development since the

early 90’s due to the introduction of Markov Chain Monte Carlo

(MCMC) methods. One of the most popular methods and easy

to implement is the Gibbs Sampling.

☞ For highly structured (complex) models, we usually have to write

our own program.
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Inference Procedure

☞ From Bayes’ theorem: π(θ | x) ∝ `(x | θ)π(θ)

☞ Bayesian inference has experienced a great development since the

early 90’s due to the introduction of Markov Chain Monte Carlo

(MCMC) methods. One of the most popular methods and easy

to implement is the Gibbs Sampling.

☞ For highly structured (complex) models, we usually have to write

our own program.

☞ This task has been simplified after the introduction of the software

BUGS (Bayesian Analysis using Gibbs Sampling).

☞ BUGS was developed in the MRC Biostatistics Unit and is available

free of charge from http://www.mrc-bsu.cam.ac.uk/bugs.
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Application: Consumption Function Estimation
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Application: Consumption Function Estimation

❧ Zellner and Geisel (1970) proposed this consumption function:

Yt = kX∗
t + εt (11)

where, for the tth period, t = 1, 2, . . . , T , Yt is measured real con-

sumption, X∗
t is “normal” real income, k is a parameter whose

value is unknown, and εt is an error term or transitory consump-

tion.

❧ Assuming that the “normal” income satisfies

X∗
t −X∗

t−1 = (1− λ)(Xt −X∗
t−1)

where the parameter λ is such that 0 < λ < 1, the model

becomes:

Yt = k(1− λ)(Xt + λXt−1 + λ2Xt−2 + . . .) + εt (12)
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❧ The transfer function model is:

Yt = Et + εt

Et = λEt−1 + ψXt

(13)

where ψ = k(1−λ) and Et = ψXt +λψXt−1 +λ2ψXt−2 + . . ..
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❧ The transfer function model is:

Yt = Et + εt

Et = λEt−1 + ψXt

(13)

where ψ = k(1−λ) and Et = ψXt +λψXt−1 +λ2ψXt−2 + . . ..

❧ Several assumptions can be made about the serial correlation

properties of the residual εt in (13):

• Model I: εt
ind
∼N(0, σ2);

• Model II: εt = ρεt−1 + νt. with νt
ind
∼N(0, σ2)
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❧ The transfer function model is:

Yt = Et + εt

Et = λEt−1 + ψXt

(13)

where ψ = k(1−λ) and Et = ψXt +λψXt−1 +λ2ψXt−2 + . . ..

❧ Several assumptions can be made about the serial correlation

properties of the residual εt in (13):

• Model I: εt
ind
∼N(0, σ2);

• Model II: εt = ρεt−1 + νt. with νt
ind
∼N(0, σ2)

❧ A priori we set λ ∼ Be(1, 1) and k ∼ Be(1, 1),

σ2 ∼ IG(0.0001, 0.0001) and, for Model II, ρ ∼ N(0, 100).
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❧ The transfer function model is:

Yt = Et + εt

Et = λEt−1 + ψXt

(13)

where ψ = k(1−λ) and Et = ψXt +λψXt−1 +λ2ψXt−2 + . . ..

❧ Several assumptions can be made about the serial correlation

properties of the residual εt in (13):

• Model I: εt
ind
∼N(0, σ2);

• Model II: εt = ρεt−1 + νt. with νt
ind
∼N(0, σ2)

❧ A priori we set λ ∼ Be(1, 1) and k ∼ Be(1, 1),

σ2 ∼ IG(0.0001, 0.0001) and, for Model II, ρ ∼ N(0, 100).

❧ Similarly to Zellner and Geisel (1970), we use the U.S. quarterly

price-deflated, seasonally adjusted data on personal disposable

income and personal consumption expenditure,1947.I-1960.IV



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example of a code used in WinBUGS

model #(Y=consumption, X=income)
{

for(t in 2:T)
{
mean.Y[t] <- lambda*Y[t-1] + k*(1-lambda)*X[t]
Y[t] ∼ dnorm(mean.Ct[t], tau.v)
}

# Prior
lambda ∼ dbeta(1,1)
k ∼ dbeta(1,1)
tau.v ∼ dgamma(0.0001,0.0001)
var.v <- 1/tau.v

}
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Figure 2: Interface do WinBUGS
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Table 1: Posterior summaries associated with parameters in Model I

k λ

mean modes sd mean modes sd

ZG1 0.948 0.940 - 1.000 0.020 0.508 0.380 - 0.900 0.254
KT 2 0.941 0.934 - 0.995 0.015 0.411 0.351 - 0.934 0.210
TF 3 0.941 0.935 - 0.995 0.015 0.409 0.347 - 0.878 0.213

1 ZG = Zellner & Geisel, 2 KT = Koyck’s transformation, 3 TF = Transfer function

(a) k (b) λ

Figure 3: Posterior densities of k and λ in Model I, using TF
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Table 2: Posterior summaries associated with parameters in Model II

k λ ρ

mean median sd mean median sd mean median sd

ZG1 0.878 0.940 0.201 0.597 0.610 0.184
KT2 0.960 0.957 0.015 0.767 0.776 0.086 0.703 0.698 0.120
TF3 0.960 0.956 0.021 0.734 0.753 0.127 0.756 0.752 0.108

1 ZG = Zellner & Geisel, 2 KT = Koyck’s transformation, 3 TF = Transfer function

(a) k (b) λ

Figure 4: Posterior densities of k and λ in Model II, using TF
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☞ Comparing Koyck’s models
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☞ Comparing Koyck’s models

☞ The Deviance Information Criterion (DIC) can be used to assess

model complexity and compare different models. DIC is given by

DIC = D̄ + pD = D(θ̄) + 2pD (14)

☞ The WinBUGS version 1.4 computes the DIC automatically. The

model with the smallest DIC is considered to be the best one.
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☞ Comparing Koyck’s models

☞ The Deviance Information Criterion (DIC) can be used to assess

model complexity and compare different models. DIC is given by

DIC = D̄ + pD = D(θ̄) + 2pD (14)

☞ The WinBUGS version 1.4 computes the DIC automatically. The

model with the smallest DIC is considered to be the best one.

Table 3: Model comparison through DIC

Deviance DIC

Model I

Koyck’s transformation 312.01 312.49
Transfer function 313.13 311.40

Model II

Koyck’s transformation 273.81 280.37
Transfer function 277.33 279.20
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☞ We use the same dataset to estimate some particular Solow’s

models
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☞ We use the same dataset to estimate some particular Solow’s

models

☞ First, we adjusted three Solow’s models for fixed r = 1, 2, 3 in

(4), assuming that εt
ind
∼N(0, σ2) in (11)

☞ Then, we allowed r to vary in the discrete set {1, 2, 3}. We used

a Categorical priori distribution for r, that is, r ∼ Categorial(p)

with p = (0.2, 0.3, 0.5), and started the chain with r0 = 3.
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☞ We use the same dataset to estimate some particular Solow’s

models

☞ First, we adjusted three Solow’s models for fixed r = 1, 2, 3 in

(4), assuming that εt
ind
∼N(0, σ2) in (11)

☞ Then, we allowed r to vary in the discrete set {1, 2, 3}. We used

a Categorical priori distribution for r, that is, r ∼ Categorial(p)

with p = (0.2, 0.3, 0.5), and started the chain with r0 = 3.

Table 4: Posterior summaries and DIC associated with the Solow’s models
k λ DIC

mean modes sd mean modes sd

r=1 0.939 0.935 - 0.995 0.013 0.387 0.369 - 0.871 0.200 313.602
r=2 0.939 0.937 0.008 0.016 0.012 0.015 319.816
r=3 0.938 0.937 0.007 0.008 0.005 0.007 319.778
r=1,2,3 0.939 0.936 - 0.996 0.012 0.380 0.348 - 0.884 0.191
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(a) k (b) λ

(c) Prob(r = 1 | y) (d) Prob(r = 2 | y) (e) Prob(r = 3 | y)

Figure 5: Posterior distribution of the parameters in Solow’s Model with a cate-
gorical prior for r
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Discussion and Future work
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Discussion and Future work

☞ We discussed here the inference of distributed lag models under

a Bayesian framework.
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Discussion and Future work

☞ We discussed here the inference of distributed lag models under

a Bayesian framework.

☞ Inference of distributed lag models can be performed using MCMC

algorithms. Use of the software WinBUGS
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Discussion and Future work

☞ We discussed here the inference of distributed lag models under

a Bayesian framework.

☞ Inference of distributed lag models can be performed using MCMC

algorithms. Use of the software WinBUGS

☞ More complex models can be analyzed under the Bayesian frame-

work: Migon (1985), Alves, Gamerman and Ferreira (2003).
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Discussion and Future work

☞ We discussed here the inference of distributed lag models under

a Bayesian framework.

☞ Inference of distributed lag models can be performed using MCMC

algorithms. Use of the software WinBUGS

☞ More complex models can be analyzed under the Bayesian frame-

work: Migon (1985), Alves, Gamerman and Ferreira (2003).

☞ An important theoretical issue, which is currently under research,

is how to choose the form of the transfer function.


