

# AN EFFICIENT SAMPLING SCHEME FOR DYNAMIC GENERALIZED MODELS

Helio S. Migon, Romy R. Ravines and Alexandra M. Schmidt

Instituto de Matemática. Universidade Federal do Rio de Janeiro. Brazil

## **Generalized Dynamic Models**

#### • Dynamic Models

| $y_t   \mu_t \sim p(\mu_t, \boldsymbol{\phi}),$                                                             | $t = 1, \ldots, T.$                                         | (1a) |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| $g(\mu_t) = F_t(\boldsymbol{\psi}_1)'\boldsymbol{\theta}_t$                                                 |                                                             | (1b) |
| $\boldsymbol{	heta}_t = \boldsymbol{G}_t(\boldsymbol{\psi}_2)\boldsymbol{	heta}_{t-1} + \boldsymbol{w}_t$ , | $\boldsymbol{w}_t \sim N(\boldsymbol{0}, \boldsymbol{W}_t)$ | (1c) |

where  $p(\mu_t, \boldsymbol{\phi})$  belongs to the exponential family,  $\mu_t = E[y_t], \boldsymbol{\phi}$ denotes other parameters in  $p(\cdot)$ , and  $\boldsymbol{\psi}_1$  and  $\boldsymbol{\psi}_2$  are the parameters in  $F_t$  and  $G_t \cdot \theta_t$  are the state parameters and are related through time via (1c), the system equation.

#### • Generalized Dynamic Linear Models

#### • Sequential Analysis

-Let  $D_t = \{y_1, \ldots, y_t\}$  be the information at time t.

- In **Dynamic Normal Linear Models**:

$$\dots (\boldsymbol{\theta}_{t-1} | D_{t-1})^{\underline{\mathsf{Evol}}} (\boldsymbol{\theta}_t | D_{t-1})^{\underline{\mathsf{Updat}}} (\boldsymbol{\theta}_t | D_t) \dots$$

- In **Dynamic Generalized Linear Models**:

-West, Harrison, and Migon (1985) introduced the Generalized Dynamic Linear Models:

$$y_{t}|\eta_{t}, \phi \sim \exp[\phi\{y_{t}\eta_{t} - a(\eta_{t})\}]b(y_{t}, \phi), \quad t = 1, \dots, T.$$
(2a)
$$\eta_{t}|D_{t-1} \sim CP(r_{t}, s_{t})$$
(2b)
$$g(\eta_{t}) = F'_{t}\theta_{t}$$
(2c)
$$\theta_{t} = G_{t}\theta_{t-1} + w_{t}, \quad w_{t} \sim [0, W_{t}]$$
(2d)
$$\theta_{0}|D_{0} \sim [m_{0}, C_{0}]$$

where  $D_t$  denotes the information at t,  $m_t \in C_t$  are the first and second moments of  $\theta_t$ , given  $D_t$ .

• Inference on heta

- MCMC: Sampling from the posterior of  $\theta_t$  can be complicated.
- -Metropolis-Hastings: Gamerman (1998), Geweke and Tanizaki (2001), etc.
- In (2),  $\mathbf{F}_t$  and  $\mathbf{G}_t$  are known, and, given  $\eta_t$ ,  $y_t$  and  $\boldsymbol{\theta}_t$  are independent.
- -West et al. (1985) proposed a system of recursions that uses the conjugate feature of the model to approximate sequentially, the posterior distributions of  $\theta_t$ : Conjugate Updating.

$$\begin{array}{c} \cdot & (\boldsymbol{\theta}_{t-1} | D_{t-1}) \stackrel{\text{Evol.}}{\longrightarrow} & (\boldsymbol{\theta}_t | D_{t-1}) & (\boldsymbol{\theta}_t | D_t) & \cdots \\ & \downarrow & \uparrow \\ (\eta_t | D_{t-1}) \stackrel{\text{Updat.}}{\longrightarrow} & (\eta_t | D_t) \end{array} \end{array}$$

## **Conjugate Updating Backward Sampling (CUBS)**

### CUBS approximation

- Let  $D_t$  be the information at t. Let  $\Phi = (\psi, \phi)$ . - The full conditional distribution of  $\theta = (\theta_1, \dots, \theta_T)$  is:  $p(\boldsymbol{\theta}|\boldsymbol{Y}, \boldsymbol{\Phi}) \propto p(\boldsymbol{\theta}_T | D_T, \boldsymbol{\Phi}) \prod_{t=1}^{T-1} \underbrace{p(\boldsymbol{\theta}_t | \boldsymbol{\theta}_{t+1}, D_t, \boldsymbol{\Phi})}_{\text{Smoothing density}}$  $\propto p(\boldsymbol{\theta}_T | D_T, \Phi) \prod_{t=1}^{T-1} p(\boldsymbol{\theta}_{t+1} | \boldsymbol{\theta}_t, D_t, \Phi) \underbrace{p(\boldsymbol{\theta}_t | D_t, \Phi)}_{\text{Filtering density}}$ 

### - The moments of the filtering distributions are approximated by:

$$p(\boldsymbol{\theta}_{t} \mid D_{t}, \Phi) \propto p(\boldsymbol{\theta}_{t} \mid D_{t-1}, \Phi) p(Y_{t} \mid \boldsymbol{\theta}_{t}, \Phi)$$

$$= \int p(\boldsymbol{\theta}_{t} \mid \eta_{t}, D_{t-1}, \Phi) \underbrace{p(\eta_{t} \mid D_{t-1}, \Phi) p(Y_{t} \mid \eta_{t}, \Phi)}_{\text{Conjugate analysis}} d\eta_{t}$$

$$\propto \int \underbrace{p(\boldsymbol{\theta}_{t} \mid \eta_{t}, D_{t-1}, \Phi)}_{\text{Linear Parase}} p(\eta_{t} \mid D_{t}, \Phi) d\eta_{t} = [\boldsymbol{m}_{t}, \boldsymbol{C}_{t}]$$

## • MCMC+CUBS

1. Initialization: set initial values  $\theta^{(0)}$ ,  $\psi^{(0)}$  and i = 1;

2. Sample  $\theta^{(i)}$  using CUBS:

(a) Compute the moments of  $p(\theta_t | D_t, \psi^{(i-1)}), m^{(i)} \in C^{(i)}$ , with the *Conjugate Updating*;

(b) Sample  $\theta^*$  with the *Backward Sampling* (Frühwirth-Schnater, 1994).

i. Sample  $\theta_T^*$  from Normal $(m_T^{(i)}, C_T^{(i)})$ ii. Sample  $\boldsymbol{\theta}_t^*, t = T - 1, \dots, 1$ , from  $p(\boldsymbol{\theta}_t | \boldsymbol{\theta}_{t+1}^*, \boldsymbol{\psi}^{(i-1)})$ (c) Set  $\theta^{(i)} = \theta^*$  with probability  $p_t$  and  $\theta^{(i)} = \theta^{(i-1)}$  with probability  $1 - p_t$ , where  $p_t = \min(1, A)$  and A is the acceptance rate of the Metropolis-Hastings:

 $\left( (\mathbf{A}^*) \right)$ 

#### **Example: Dynamic Gamma Model**

1. Set t = 1

2. Compute  $m_t$  and  $C_t$ :

(a) Compute the prior moments of  $\theta_t$  and  $g(\eta_t)$ , using the model:

 $\theta_t | D_{t-1} \sim [a_t, R_t] : a_t = G_t m_{t-1}, R_t = G_t C_{t-1} G'_t + W_t$  $g(\eta_t)|D_{t-1} \sim [f_t, q_t] : f_t = \mathbf{F}'_t \mathbf{a}_t, \quad q_t = \mathbf{F}'_t \mathbf{R}_t \mathbf{F}_t$ 

(b) Compute the moments of the conjugate prior for  $g(\eta_t)$ :

 $E[g(\eta_t)|D_{t-1}] = \log r_t - \gamma(s_t + 1) = f_t$  $Var[g(\eta_t)|D_{t-1}] = \gamma'(s_t+1) \qquad = q_t$ 

(c) Compute the posterior moments of  $g(\eta_t)$ :

 $E[g(\eta_t)|D_t] = \log(r_t + \phi y_t) - \gamma(s_t + \phi + 1) = f_t^*$  $Var[g(\eta_t)|D_t] = \gamma'(s_t + \phi + 1) \qquad \qquad = q_t^*$ 

 $\boldsymbol{m}_t = E[\boldsymbol{\theta}_t \mid D_t, \Phi]$  $= E [\widehat{E} \{ \boldsymbol{\theta}_t \mid \eta_t, D_{t-1} \} \mid D_t, \Phi]$  $\boldsymbol{C}_t = \boldsymbol{V}[\boldsymbol{\theta}_t \mid D_t, \boldsymbol{\Phi}]$  $= V [\widehat{E} \{ \boldsymbol{\theta}_t \mid \eta_t, D_{t-1} \} \mid D_t, \Phi]$ +  $E[\widehat{V}\{\boldsymbol{\theta}_t \mid \eta_t, D_{t-1}\} \mid D_t, \Phi]$ 

$$A = \min\left\{1, \frac{\omega(\boldsymbol{\theta}^*)}{\omega(\boldsymbol{\theta})}\right\}, \quad \omega(\boldsymbol{\theta}^*) = \frac{\pi(\boldsymbol{\theta}^*)}{q(\boldsymbol{\theta}^*)},$$

3. Sample  $\psi^{(i)}$  using, in general, a Metropolis-Hastings step ;

4. Sample  $\phi^{(i)}$  using, in general, a Metropolis-Hastings step;

5. **Update**: Set i = i + 1 and return to 2 until convergence.

(d) Compute the posterior moments of  $\theta_t$ ,  $\theta_t | D_t \sim [m_t, C_t]$ :

$$\boldsymbol{m}_t = \boldsymbol{a}_t + \boldsymbol{R}_t \boldsymbol{F}_t (f_t^* - f_t) \frac{1}{q_t} \boldsymbol{C}_t = \boldsymbol{R}_t - \boldsymbol{R}_t \boldsymbol{F}_t \boldsymbol{F}_t^\prime \boldsymbol{R}_t (1 - \frac{q_t^*}{q_t}) \frac{1}{q_t}$$

3. Set t = t + 1 and return to 2 if t < T; 4. Sample  $\theta_T$  from  $N(m_T, C_T)$ ; 5. Set t = T - 1, sample  $\theta_t$  from  $p(\theta_t \mid \theta_{t+1}, D_t, \theta) = N(\boldsymbol{m}_t^s, \boldsymbol{C}_t^s)$ ; 6. Set t = t - 1 and return to 5 if t > 1;

## Monte Carlo Study

#### • A Simulation Study

#### • Results

We generated data from a **first order dynamic Poisson model**:

 $Y_t \sim \text{Poisson}(\lambda_t)$ ,  $t = 1, \ldots, T$ (3a)  $\log(\lambda_t) = \theta_t$ (3b)  $w_t \sim N(0, W)$  $\theta_t = \theta_{t-1} + w_t$ (3c)  $\theta_0 \sim N(m_0, C_0).$ (3d)

- Prior: IG(1e - 03, 1e - 03), for W and N(0, 1e + 03), for  $\theta_0$ .

-We used (3), with  $\theta_0 = 0.50$  and W = 0.01, to generate 300 artificial time series of different sizes, T = (50, 100, 300).

#### • Comparing 7 different sampling schemes

Table 1: Root mean square error (RMS), acceptance rate and time (in seconds) for T = 50

|        | $RMS_{Y}$ |        | $RMS_{	heta}$ |        | Acceptance rate |        | Time(sec) |
|--------|-----------|--------|---------------|--------|-----------------|--------|-----------|
| Scheme | mean      | sd     | mean          | sd     | mean            | sd     |           |
| I      | 1.2525    | 0.1095 | 0.2366        | 0.0361 | 42.6297         | _      | 280.3062  |
| II     | 1.2766    | 0.1169 | 0.2342        | 0.0263 | 33.5253         | 7.1575 | 214.9814  |
|        | 1.2599    | 0.1107 | 0.2492        | 0.0513 | 97.2529         | 1.2287 | 629.0840  |
| IV     | 1.2443    | 0.1148 | 0.2583        | 0.0290 | 98.1449         | 0.6814 | 120.7988  |
| V      | 1.3155    | 0.1322 | 0.2376        | 0.0345 | 51.4230         | 4.5316 | 89.0456   |
| VI     | 1.2403    | 0.1137 | 0.2611        | 0.0280 | 37.7968         | 6.3019 | 248.2544  |
| VII    | 1.2365    | 0.1109 | 0.2596        | 0.0303 | 44.6136         | 5.8161 | 219.6554  |





Figure 2: Box plots of the (log)inefficiencies of  $\theta_t$ , t = 5, 145, 195 and W, for T = 300.

#### • Final Remarks

- We reviewed the seminal work of Dynamic Generalized Linear Models of West et al. (1985) and showed that their proposed algorithm can be used with satisfactory results, to construct a proposal density in a Metropolis-Hastings step to sample in block, all the state

I. Conjugate Updating and Backward Sampling (CUBS): Multimove sampling.

- II. Conjugate Updating Single move: The proposal is a Normal density with mean and variance based on the smoothed moments of the Conjugate Updating at time t.
- III. From Gamerman (1998) Single move, sampling from the system **disturbances:** The proposal is obtained from an adjusted normal dynamic linear model but re-parametrizated in terms of the system disturbances.
- IV. From Gamerman (1998) Single move, sampling from the state parameters: Proposal obtained from an adjusted normal dynamic linear model.
- V. From Geweke and Tanizaki (2001) Proposal Density I: The proposal is the density function obtained from the system equation.
- VI. From Geweke and Tanizaki (2001) Proposal Density II: The proposal is a normal density with mean and variance based on the extended Kalman smoothed estimates at time t.

VII. From Geweke and Tanizaki (2001) - Proposal Density III: The proposal is a normal density with mean based in a random walk and variance based in the extended Kalman smoothed estimates at time t.

Figure 1: Box plots of the (log)inefficiencies of  $\theta_t$ , t = 5, 25, 45 and W, for T = 50.

Table 2: Root mean square error (RMS), acceptance rate and time (in seconds) for T = 300

|        | נת      |        |                |        |                 |         |           |
|--------|---------|--------|----------------|--------|-----------------|---------|-----------|
|        | $RMS_Y$ |        | $RMS_{\theta}$ |        | Acceptance rate |         | Time(sec) |
| Scheme | mean    | sd     | mean           | sd     | mean            | sd      | -         |
| I      | 1.6085  | 0.3039 | 0.2281         | 0.0352 | 31.3526         | _       | 247.76    |
| П      | 1.6158  | 0.3065 | 0.3798         | 0.2213 | 32.1778         | 9.4706  | 314.09    |
| III    | 1.6107  | 0.2980 | 0.2273         | 0.0376 | 98.4285         | 0.6872  | 2158.93   |
| IV     | 4.5229  | 3.7538 | 0.5459         | 0.2526 | 95.5152         | 14.1218 | 163.87    |
| V      | 1.7110  | 0.3295 | 0.4718         | 0.1330 | 51.3656         | 4.1081  | 74.44     |
| VI     | 1.6076  | 0.3012 | 0.2365         | 0.0344 | 32.8817         | 8.9858  | 371.31    |
| VII    | 1.6066  | 0.3025 | 0.2739         | 0.0876 | 40.3615         | 7.8025  | 338.89    |

#### parameters of a dynamic model.

-We performed an extensive comparison between our proposal and other previously established and noted that CUBS is much **simpler** to implement and the results are quite satisfactory.

- One of our current topics of research is the application of the scheme proposed to make inference in k-parameters distributions.

## References

Frühwirth-Schnater, S. (1994). Data augmentation and dynamic linear models. *Jour*nal of Time Series Analysis, 15(2), 183–202.

Gamerman, D. (1998). Markov chain Monte Carlo for dynamic generalised linear models. *Biometrika*, 85(1), 215–227.

- Geweke, J., & Tanizaki, H. (2001). Bayesian estimation of state space models using Metropolis-Hastings algorithm within Gibbs sampling. Computacional Statistics & Data Analysis, 37, 151-170.
- West, M., Harrison, J., & Migon, H. (1985). Dynamic generalized linear models and Bayesian forecasting. Journal of the American Statistical Association, 80(389), 73–83.