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Generalized Dynamic Models

• Dynamic Models

yt|µt ∼ p(µt, φ), t = 1, . . . , T. (1a)

g(µt) = Ft(ψ1)
′θt (1b)

θt = Gt(ψ2)θt−1 + wt, wt ∼ N(0, W t) (1c)

where p(µt, φ) belongs to the exponential family, µt = E[yt], φ
denotes other parameters in p(·), and ψ1 and ψ2 are the parameters
in Ft and Gt.θt are the state parameters and are related through
time via (1c), the system equation.

• Inference on θ

– MCMC: Sampling from the posterior of θt can be complicated.

– Metropolis-Hastings: Gamerman (1998), Geweke and Tanizaki
(2001), etc.

•Generalized Dynamic Linear Models

– West, Harrison, and Migon (1985) introduced the Generalized Dy-
namic Linear Models:

yt|ηt, φ ∼ exp[φ{ytηt − a(ηt)}]b(yt, φ), t = 1, . . . , T.
(2a)

ηt|Dt−1 ∼ CP(rt, st) (2b)

g(ηt) = F ′
tθt (2c)

θt = Gtθt−1 + wt, wt ∼ [0, W t] (2d)

θ0|D0 ∼ [m0, C0]
where Dt denotes the information at t, mt e Ct are the first and

second moments of θt, given Dt.
– In (2), Ft and Gt are known, and, given ηt, yt and θt are indepen-

dent.
– West et al. (1985) proposed a system of recursions that uses the

conjugate feature of the model to approximate sequentially, the pos-
terior distributions of θt: Conjugate Updating.

• Sequential Analysis

– Let Dt = {y1, . . . , yt} be the information at time t.

– In Dynamic Normal Linear Models:

. . . (θt−1|Dt−1)Evol. +3 (θt|Dt−1) Updat.
+3(θt|Dt) . . .

– In Dynamic Generalized Linear Models:

. . . (θt−1|Dt−1)Evol. +3 (θt|Dt−1)
��

(θt|Dt) . . .

(ηt|Dt−1) Updat.
+3(ηt|Dt)

KS

Conjugate Updating Backward Sampling (CUBS)

• CUBS approximation

– Let Dt be the information at t. Let Φ = (ψ, φ).

– The full conditional distribution of θ = (θ1, . . . , θT) is:

p(θ|Y , Φ) ∝ p(θT|DT, Φ)
T−1

∏
t=1

p(θt|θt+1, Dt, Φ)︸ ︷︷ ︸
Smoothing density

∝ p(θT|DT, Φ)
T−1

∏
t=1

p(θt+1 | θt, Dt, Φ) p(θt | Dt, Φ)︸ ︷︷ ︸
Filtering density

– The moments of the filtering distributions are approximated by:

p(θt | Dt, Φ) ∝ p(θt | Dt−1, Φ)p(Yt | θt, Φ)

=
∫

p(θt | ηt, Dt−1, Φ) p(ηt | Dt−1, Φ)p(Yt | ηt, Φ)︸ ︷︷ ︸
Conjugate analysis

dηt

∝
∫

p(θt | ηt, Dt−1, Φ)︸ ︷︷ ︸
Linear Bayes

p(ηt | Dt, Φ)dηt = [mt, Ct]

mt = E[θt | Dt, Φ]
= E

[
Ê{θt | ηt, Dt−1} | Dt, Φ

]
Ct = V[θt | Dt, Φ]

= V
[
Ê{θt | ηt, Dt−1} | Dt, Φ

]
+ E

[
V̂{θt | ηt, Dt−1} | Dt, Φ

]

•MCMC+CUBS

1. Initialization: set initial values θ(0), ψ(0) and i = 1;

2. Sample θ(i) using CUBS:

(a) Compute the moments of p(θt|Dt, ψ(i−1)), m(i) e C(i),
with the Conjugate Updating;

(b) Sample θ∗ with the Backward Sampling (Frühwirth-Schnater,
1994).

i. Sample θ∗
T from Normal(m(i)

T , C(i)
T )

ii. Sample θ∗
t , t = T − 1, . . . , 1, from p(θt|θ∗

t+1, ψ(i−1))

(c) Set θ(i) = θ∗ with probability pt and θ(i) = θ(i−1) with
probability 1 − pt, where pt = min(1, A) and A is
the acceptance rate of the Metropolis-Hastings:

A = min

{
1,

ω(θ∗)
ω(θ)

}
, ω(θ∗) =

π(θ∗)
q(θ∗)

,

3. Sample ψ(i) using, in general, a Metropolis-Hastings step ;

4. Sample φ(i) using, in general, a Metropolis-Hastings step;

5. Update: Set i = i + 1 and return to 2 until convergence.

Example: Dynamic Gamma Model

1. Set t = 1

2. Compute mt and Ct :
(a) Compute the prior moments of θt and g(ηt), using the model:

θt|Dt−1 ∼ [at, Rt] : at = Gtmt−1, Rt = GtCt−1G′
t + W t

g(ηt)|Dt−1 ∼ [ ft, qt] : ft = F ′
tat, qt = F ′

tRtFt

(b) Compute the moments of the conjugate prior for g(ηt):

E[g(ηt)|Dt−1] = log rt − γ(st + 1) = ft
Var[g(ηt)|Dt−1] = γ′(st + 1) = qt

(c) Compute the posterior moments of g(ηt):

E[g(ηt)|Dt] = log(rt + φyt) − γ(st + φ + 1) = f ∗t
Var[g(ηt)|Dt] = γ′(st + φ + 1) = q∗t

(d) Compute the posterior moments of θt, θt|Dt ∼ [mt, Ct]:

mt = at + RtFt( f ∗t − ft)
1
qt

Ct = Rt − RtFtF ′
tRt

(
1 − q∗t

qt

) 1
qt

3. Set t = t + 1 and return to 2 if t < T;
4. Sample θT from N(mT, CT);
5. Set t = T − 1, sample θt from p(θt | θt+1, Dt, θ) = N(ms

t, Cs
t);

6. Set t = t − 1 and return to 5 if t > 1;

Monte Carlo Study

• A Simulation Study

We generated data from a first order dynamic Poisson model:

Yt ∼ Poisson(λt), t = 1, . . . , T (3a)

log(λt) = θt (3b)

θt = θt−1 + wt wt ∼ N(0, W) (3c)

θ0 ∼ N(m0, C0). (3d)

– Prior: IG(1e − 03, 1e − 03), for W and N(0, 1e + 03), for θ0.

– We used (3), with θ0 = 0.50 and W = 0.01, to generate 300
artificial time series of different sizes, T = (50, 100, 300).

•Comparing 7 different sampling schemes

I. Conjugate Updating and Backward Sampling (CUBS): Multimove sampling.

II. Conjugate Updating - Single move: The proposal is a Normal density with mean

and variance based on the smoothed moments of the Conjugate Updating at time t.

III. From Gamerman (1998) - Single move, sampling from the system
disturbances: The proposal is obtained from an adjusted normal dynamic linear model but

re-parametrizated in terms of the system disturbances.

IV. From Gamerman (1998) - Single move, sampling from the state pa-
rameters: Proposal obtained from an adjusted normal dynamic linear model.

V. From Geweke and Tanizaki (2001) - Proposal Density I: The proposal is

the density function obtained from the system equation.

VI. From Geweke and Tanizaki (2001) - Proposal Density II: The proposal is

a normal density with mean and variance based on the extended Kalman smoothed estimates at

time t.

VII. From Geweke and Tanizaki (2001) - Proposal Density III: The proposal is

a normal density with mean based in a random walk and variance based in the extended Kalman

smoothed estimates at time t.

•Results

Table 1: Root mean square error (RMS), acceptance rate and time (in seconds) for T = 50

RMSY RMSθ Acceptance rate Time(sec)
Scheme mean sd mean sd mean sd

I 1.2525 0.1095 0.2366 0.0361 42.6297 – 280.3062
II 1.2766 0.1169 0.2342 0.0263 33.5253 7.1575 214.9814
III 1.2599 0.1107 0.2492 0.0513 97.2529 1.2287 629.0840
IV 1.2443 0.1148 0.2583 0.0290 98.1449 0.6814 120.7988
V 1.3155 0.1322 0.2376 0.0345 51.4230 4.5316 89.0456
VI 1.2403 0.1137 0.2611 0.0280 37.7968 6.3019 248.2544
VII 1.2365 0.1109 0.2596 0.0303 44.6136 5.8161 219.6554
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(a) t = 5

●
●
●

●

●
●

●

●

●
●

●

●
●●●

●

●●●

●
●
●●

I II III IV V VI VII

1
2

3
4

lo
g(

in
ef

fic
ie

nc
y)

(b) t = 25
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(c) t = 45
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(d) W

Figure 1: Box plots of the (log)inefficiencies of θt, t = 5, 25, 45 and W, for T = 50.

Table 2: Root mean square error (RMS), acceptance rate and time (in seconds) for T = 300

RMSY RMSθ Acceptance rate Time(sec)
Scheme mean sd mean sd mean sd

I 1.6085 0.3039 0.2281 0.0352 31.3526 – 247.76
II 1.6158 0.3065 0.3798 0.2213 32.1778 9.4706 314.09
III 1.6107 0.2980 0.2273 0.0376 98.4285 0.6872 2158.93
IV 4.5229 3.7538 0.5459 0.2526 95.5152 14.1218 163.87
V 1.7110 0.3295 0.4718 0.1330 51.3656 4.1081 74.44
VI 1.6076 0.3012 0.2365 0.0344 32.8817 8.9858 371.31
VII 1.6066 0.3025 0.2739 0.0876 40.3615 7.8025 338.89
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(a) t = 5
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(b) t = 145
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(c) t = 295
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Figure 2: Box plots of the (log)inefficiencies of θt, t = 5, 145, 195 and W, for T = 300.

• Final Remarks

– We reviewed the seminal work of Dynamic Generalized Linear Mod-
els of West et al. (1985) and showed that their proposed algorithm
can be used with satisfactory results, to construct a proposal den-
sity in a Metropolis-Hastings step to sample in block, all the state
parameters of a dynamic model.

– We performed an extensive comparison between our proposal and
other previously established and noted that CUBS is much simpler
to implement and the results are quite satisfactory.

– One of our current topics of research is the application of the scheme
proposed to make inference in k-parameters distributions.
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