

A Bayesian Approach for the Rainfall-Runoff Problem in Multiple Basins

Romy R. Ravines romy@dme.ufrj.br

Alexandra M. Schmidt

alex@im.ufrj.br

Helio S. Migon migon@im.ufrj.br

Instituto de Matemática. Universidade Federal do Rio de Janeiro. Brazil

Introduction: Rainfall-Runoff relationship

Proposed approach: Rainfall-Runoff in multiple basins

Rainfall-Runoff model

Let Y_t be the basin **runoff** and X_t the basin **rainfall** at time t:

 $Y_t \sim p(Y_t | \mu_t, \phi_t), \quad t = 1, 2, ...$ $g(\mu_t) = f_1(\alpha_t, E_t)$ $E_t = f_2(E_{t-1}, \ldots, E_0, X_t)$

- $-p(Y_t|\mu_t, \phi_t)$ defined in \mathbb{R}^+ : Gamma, log-normal, etc;
- $-\alpha_t$ denotes a trend and E_t denotes the total effect of rainfall at time t;
- $-g(\cdot), f_1(\cdot)$ and $f_2(\cdot)$ are known non-linear functions describing the dynamics of the hydrological process.

Rainfall Effect on Runoff: A transfer function

Following Migon and Monteiro (1997):

 $E_t = \rho_t E_{t-1} + \gamma_t X_t$

Multivariate Rainfall-Runoff model

Let Y_t^m be the runoff at time t from basin m, t = 1, ..., T; m = 1, ..., M. The joint distribution of $Y_t = (Y_t^1, \dots, Y_t^M)'$ can be expressed, for example, as:

 $p(\boldsymbol{Y}_t|\boldsymbol{\theta}) = p(\boldsymbol{Y}_t^M|\boldsymbol{Y}_t^{M-1},\boldsymbol{\theta})p(\boldsymbol{Y}_t^{M-1}|\boldsymbol{Y}_t^{M-2},\boldsymbol{\theta})\cdots p(\boldsymbol{Y}_t^2|\boldsymbol{Y}_t^1,\boldsymbol{\theta})p(\boldsymbol{Y}_t^1,\boldsymbol{\theta}),$

where $p(Y_t^m)$ is the (conditional) distribution of Y_t^m .

Rainfall Effect

Let X_t^m be the rainfall at time t from basin m. Let $m = A, B, B \subset A$, then $Y_t = (Y_t^A, Y_t^B)'$ and $X_t = (X_t^A, X_t^B)'$ are the time series of both basins. Let $X_t^{A|B} = X_t^A - X_t^B$ be the rainfall at an area that belongs to basin A but not to basin B, then

$E_{t} = \rho_{t} E_{t-1} + [1 - \exp(-\kappa_{t} X_{t})] [\vartheta_{t} - (\alpha_{t} + \rho_{t} E_{t-1})].$

– Parameters interpretation:

- Some particular cases:

 α is the basic level or **stream flow**, ρ is the recharge factor or permanence rate of the rainfall effect and γ is the velocity of response to precipitation, related to soil saturation.

 $\gamma_t = \gamma$ $\gamma_t = \gamma_{t-1} + \delta_t$ $\gamma_t = \gamma + \delta_t; \quad \gamma \sim N(a, b)$

Basin Rainfall

Let $\{X_t(s), s \in B \subset \mathbb{R}^2, t = 1, 2, \dots\}$ be a stochastic process at discrete time t and over spatial domain B. In particular, $X_t(s)$ here represents the level of rainfall at time t and location s. The basin rainfall at time t is

 $X_t = |B|^{-1} \int_{B} X_t(s) ds,$

where |B| is the basin area. Following Sansó and Guenni (2000), $X_t(s)$ can be:

$$X_{t}(s_{i}) = \begin{cases} w_{t}(s_{i})^{\beta} & \text{if } w_{t}(s_{i}) > 0, \quad s_{i} \in B, \quad i = 1, \dots, S, \\ 0 & \text{if } w_{t}(s_{i}) \leq 0, \end{cases}$$
$$w_{t}(s) = \theta_{t}f(s) + Z_{t}(s) + \epsilon_{t}(s), \quad s = (s_{1}, \dots, s_{S})'$$
$$Z_{t}(s) \sim GP(\mathbf{0}, \sigma^{2}\varrho(||s_{1}, s_{2}||, \lambda)), \end{cases}$$

where $w_t(s_i)$ is a latent variable; $\theta_t f(s)$ is a polynomial trend; $Z_t(s)$ is a process with variance σ^2 and spatial correlation function $\rho(||s - s'||, \lambda)$ (depending on λ); and $\epsilon_t(s)$ is a random error.

 $p(\boldsymbol{Y}_t|\boldsymbol{X}_t,\boldsymbol{\theta}) = p(\boldsymbol{Y}_t^A|\boldsymbol{Y}_t^B,\boldsymbol{X}_t^{A|B},\boldsymbol{\Theta})p(\boldsymbol{Y}_t^B|\boldsymbol{X}_t^B,\boldsymbol{\Theta})$

Basins Rainfall

Following Gelfand et al. (2001) one can use Monte Carlo integration, such that:

$$X_t^m = \frac{1}{|m|} \int_m X_t(s) ds \approx \frac{1}{N_m} \sum_{i=1}^{N_m} \hat{X}_t(s_i) \quad i = 1, \dots, N_m,$$

where N_m is the number of points of a grid constructed **inside the limits** of the basin *m* and $\dot{X}_t(i)$ is the interpolated value for the s_i location of that grid.

Inference Procedure

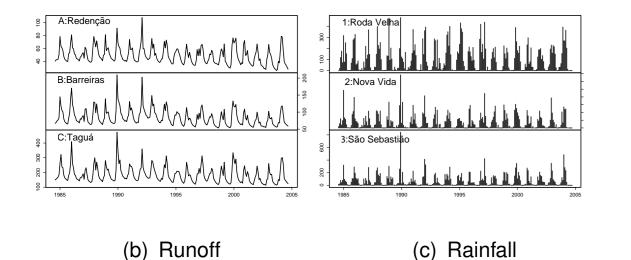
The joint distribution of $Y = (Y_1, ..., Y_T)', X = (X_1, ..., X_T)'$ and $X_t(s) = (X_t(s_1), ..., X_t(s_S))'$ is $p(\boldsymbol{Y}, \boldsymbol{X}, \boldsymbol{X}(\boldsymbol{s}) | \boldsymbol{\Theta}) = \prod_{t=1}^{I} p(\boldsymbol{Y}_t | \boldsymbol{X}_t, \boldsymbol{X}_t(\boldsymbol{s}), \boldsymbol{\Theta}_{\boldsymbol{Y}}) p(\boldsymbol{X}_t | \boldsymbol{X}_t(\boldsymbol{s}), \boldsymbol{\Theta}_{\boldsymbol{X}}) \prod_{i=1}^{S} p(\boldsymbol{X}_t(\boldsymbol{s}_i) | \boldsymbol{\Theta}_{\boldsymbol{X}}),$

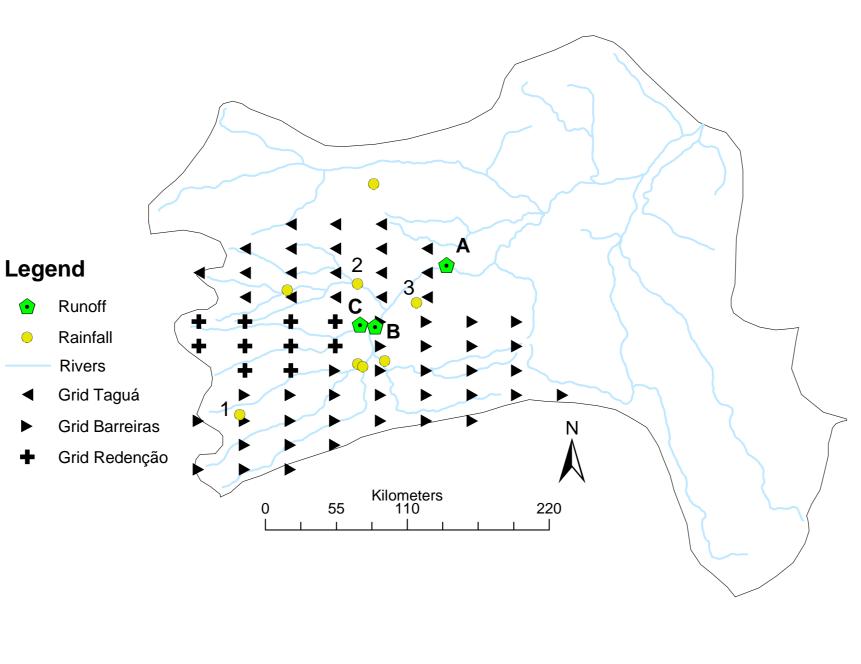
where $\Theta = (\Theta_Y, \Theta_X)$, Θ_Y are parameters in the runoff model and Θ_X are parameters in the rainfall model.

MCMC techniques: Conjugate updating backward sampling, CUBS (Ravines, Migon, & Schmidt, 2007), for Gamma transfer functions.

Application: Rio Grande Basin

(a) Location





(d) Sub-basins and Stations

Results: Multivariate transfer functions

The model:	Ta
$Y_t^A Y_t^B \sim \text{Lognormal}(\mu_t^{A B}, \sigma_{A B}^2) t = 1, \dots, T$	
$Y_t^B Y_t^C \sim \text{Lognormal}(\mu_t^{B C}, \sigma_{B C}^2)$	
$Y_t^C \sim \text{Lognormal}(\mu_t^C, \sigma_C^2)$	
$\mu_t^{A B} = \alpha^{A B} + \eta^{A B} Y_t^B + E_t^{A B}$	
$\mu_t^{B C} = \alpha^{B C} + \eta^{B C} \Upsilon_t^C + E_t^{B C}$	
$\mu_t^C = \alpha^C + E_t^C$	
$E_t^m = \rho^m E_{t-1}^m + \gamma^m X_t^m m + w_t^m$	
$w_t^m \sim \text{Normal}(0, W_m)$ $m = A B, B C, C;$	

 Table 1: Comparison with univariate models
 MSE MAE Multivariate model A|B7.025 120.684 B|C1.820 9.060 2.568 1.009 Univariate independent models 7.756 162.991 AВ 8.047 1.652 2.568 1.009

Table 2: Some posterior summaries

Figure 1: Rio Grande Basin: Location, sub-basins, monitoring sites, interpolation grids and some time series.

Data: monthly recorded series from January 1984 to September 2004, at three runoff stations and nine rainfall stations irregularly located in an area of drainage of $37522.48 \, km^2$.

Results: Spatial Interpolation

4			

-	A B = Taguá Barreiras							B C = Barreiras Redenção						C = Redenção					
_		mean	25%	50%	75%	Ŕ		mean	25%	50%	75%	Ŕ		mean	25%	50%	75%	Ŕ	
	$\alpha^{A B}$	1.151	1.022	1.142	1.276	1.00	$\alpha^{B C}$	0.587	0.507	0.581	0.654	1.01	α^{C}	3.543	3.525	3.544	3.561	1.01	
	$\eta^{A B}$	0.915	0.887	0.916	0.945	1.01	$\eta^{B C}$	0.989	0.971	0.990	1.009	1.01							
	$\rho^{A B}$	0.510	0.387	0.533	0.658	1.00	$\rho^{B C}$	0.743	0.692	0.752	0.806	1.00	$ ho^C$	0.594	0.575	0.594	0.613	1.03	
	$\gamma^{A B}$	0.025	0.014	0.024	0.035	1.00	$\gamma^{B C}$	0.005	0.003	0.005	0.008	1.00	γ^{C}	1.645	1.597	1.645	1.696	1.00	
	$W_{A B}$	0.003	0.002	0.003	0.004	1.01	$W_{B C}$	0.003	0.002	0.002	0.003	1.00	W_C	0.005	0.005	0.005	0.006	1.01	
	σ^2	0 007	0 006	0 007	0 009	1 04	σ^2	0 004	0.003	0 004	0.005	1 07	σ^2	0 002	0.002	0 002	0 003	1 10	

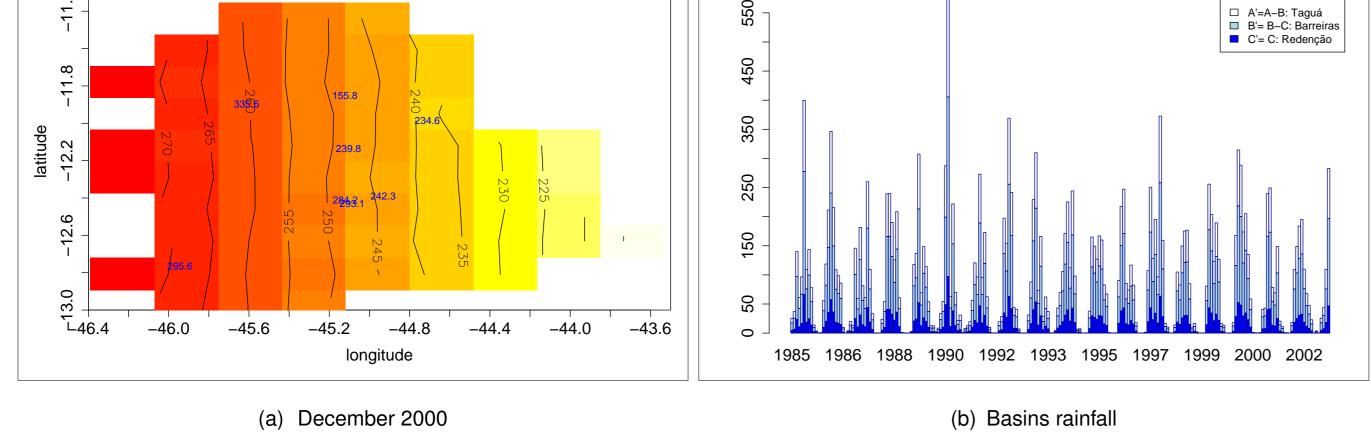


Figure 2: Posterior mean of rainfall in a specific month and the aereal rainfall for all the sub-basins

0.007 0.006 0.007 0.009 1.04 0⁻_{BlC} 0.004 0.003 0.004 0.005 1.07 0⁻_C 0.002 0.002 0.002 0.003 1.10

Final Remarks

• Main contribution: proposed approach. Modeling simultaneously rainfall and runoff taking into account the different spatial units in which they are measured.

• Features of the proposed models: its parameters have **physical interpretations** and assumptions of normality or stationarity of the time series are not needed.

• Results show that our approach is a **promising tool** for the runoff-rainfall analysis.

• An extension: hierarchical models to handle data from several basins simultaneously.

References

Gelfand, A. E., Zhu, L., & Carlin, B. (2001). On the change of support problem for spatio-temporal data. *Biostatistics*, 2(1), 31–45. Migon, H., & Monteiro, A. B. (1997). Rain-fall modelling: An application of Bayesian forecasting. Stochastic Hydrology and Hydraulics, 11, 115–127. Ravines, R., Migon, H., & Schmidt, A. (2007). An efficient sampling scheme for generalized dynamic models (Tech. Rep.). Instituto de Matemática, Universidade Federal do Rio de Janeiro. Sansó, B., & Guenni, L. (2000). A non-stationary multi-site model for rainfall. Journal of the American Statistical Association, 95, 1089–1100.